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1 Introduction

Background

The U.S. Army is responsible for managing 12.4 million acres of land on 186 major
installations worldwide (DA 1989). Army installations span all North American
ecoregions and habitat types, and are used for a variety of military training and
testing activities, along with many nonmilitary uses, including fish and wildlife, forest
products, recreation, agriculture, and grazing. Proper land management supports the
military mission and multiple use activities, but also presents the Army with a unique
challenge as monitor and steward of public lands. The Army's standard for land
inventory and monitoring is the Land Condition-Trend Analysis (LCTA) program,
which it uses to collect, analyze, and report natural resources data.

Programs like LCTA depend on accurate data-e.g., information on the composition
and distribution of landcover-to help Army land managers maintain installation
natural resources. Such information may be compiled from various data sources and
presented in many forms. Landcover characteristics, for example, may be reported in
summary statistics or spatial representations. An increasingly common approach is
to represent landcover information in spatial form derived from remotely-sensed multi-
spectral satellite digital data. A geographic information system (GIS) with image-
processing capabilities can help automate the process of interpreting this digital data
to identify and delineate various characteristics of the earth's surface.

For information derived from remotely-sensed data to be useful in decisionmaking, the
data must be checked against the physical land features for accuracy; it must be
"accuracy assessed." Much attention has been given to the various methods of
classifying remotely-sensed digital data; however, less attention has been paid to the
rigorous accuracy assessment of the classification products. Product maps are often
prematurely presented as successful integration of ground-truthed data without any
statistical evaluation or with only a weak application of inappropriate statistical
methods. An objective, quantitative, statistical approach is required to estimate the
accuracy of thematic classifications of remotely-sensed digital data. Adequate
techniques of classification accuracy have been developed and must now be applied to
verify data collected for use in applications developed to support natural resource
management through the LCTA program (ETN 420-74-3 1990; Tazik et al. 1992).
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Objectives

The objectives of this study were to:

1. Review applicable methods to perform accuracy assessment of remotely sensed

data when used for natural resources inventory and monitoring goals

2. Derive a framework for use of applicable methods within the LCTA program
3. Test the execution of accuracy assessment methods with synthetic data.

Approach

A literature search was done to review current accuracy assessment methods. Current

methods were located, characterized, and presented in detail for the user of LCTA

data. Procedures were derived for performing accuracy assessment, and a test
example was performed using synthetic data.

Mode of Technology Transfer

It is recommended that methods for accuracy assessment outlined in this report be

incorporated into the LCTA program, and that these or similar methods be required

for all applications of remotely sensed data when product map layers are to be used in

natural resources management decisionmaking.
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2 Remotely-Sensed Satellite Digital Data

Two types of data are required to complete any sort of mapping with remotely-sensed

data. The first is the remotely-sensed data itself, and the second (and equally

important) is the ground-truthed data. Without ground-truthed data, remotely-sensed

data is of limited value.

Remotely-sensed data is "... acquired by a device that is not in contact with the object,
area, or phenomenon under investigation" (Lillesand and Kiefer 1987). Remotely-
sensed data can be acquired by space-based, airborne, or ground-based electromagnetic
sensors. These devices measure the electromagnetic energy being reflected from earth

for a particular area. This electromagnetic energy is an ordered array of radiation

extending from short to long radio waves. Remote sensor systems separate these radio
waves into distinct bands or channels, analogous to the colors of the spectrum (Jensen
1992, pp 32-36). The commercial French satellite SPOT (Systeme Probatoire pour
l'Observation del la Terre) and LANDSAT, a U.S.-developed series of platforms

operated by Earth Observation Satellite Company (EOSAT) are the most common

satellite systems for large area data acquisition. Each of these satellites sensors offers
a broad area of coverage. The SPOT high resolution visible (HRV) sensor covers 60 x

60 km with a spatial resolution of 20 m, temporal resolution of 26 days and three
spectral bands (green, 0.50 to 0.59 pm; red, 0.61 to 0.68 pm; and near infrared, 0.79

to 0.89 gm). The LANDSAT Thematic Mapper (TM) sensor covers 165 x 180 km with
a temporal resolution of 16 days, six bands with spatial resolution of 30 m (blue, 0.45
to 0.52 pm; green, 0.52 to 0.60 gm; red, 0.63 to 0.69 pm; near infrared, 0.76 to 0.90,pm;
mid infrared, 1.55 to 1.75 pm; and mid infrared, 2.08 to 2.35 pm) and one band with

spatial resolution of 120 m (thermal infrared, 10.4 12.5 pm). Both systems are in Sun-
synchronous orbits so the satellite passes over the same area of the earth at the same

solar time in each temporal cycle.

Classification

Multi-spectral, remotely-sensed digital data can provide a great deal of information on

characteristics of the Earth's surface. Various image-processing techniques, when
applied to this data, enhance the extraction of earth resource information. Two basic

forms of derived information are continuous and discrete data. Continuous data can
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be represented as a continuum such as percent bare ground or cover. Discrete data is

separate and distinct, or discontinuous. Examples of thematic representations of

discrete variables are soils, plant communities, and land use.

Remotely-sensed spectral data is a continuous form of data where digital numbers (dn)

represent the reflected energy in each band (spectral region). The objective of image

classification is to assign each cell or picture element (pixel) of the satellite digital data

into an appropriate thematic category in a process called "discrete classification." The

most common data clustering algorithm used to automate classification of satellite

digital data is maximum likelihood. Other types of data clustering algorithms are the

minimum distance, mahanbois distance, and contextual (smap).

Accuracy Assessment

For remotely-sensed data to be truly useful and effective, an appropriate technique of

accuracy assessment needs to be performed. Accuracy assessment can be defined as

a comparison of a map produced from remotely-sensed data with another map from
some other source. A determination is made of how closely the new map produced

from the remotely-sensed data matches the source map. Evaluation of the accuracy

of a classification of remotely-sensed data can fall into one of two general categories:

non-site-specific assessment, or site-specific assessment (Campbell 1987). Of several

approaches to accuracy assessment, the following sections will focus on the site-specific

error analysis of pixel misclassification.

Non-Site-Specific

Non-site-specific assessment is a simplistic approach to assessing the accuracy of the

classification of remotely-sensed data (Campbell 1987, p 340). In this method, a

comparison is made between the "known" or estimated area and the area derived

through the process of the discrete classification of remotely-sensed data. For

example, an estimate is made of the percentage of area represented by three

categories: grassland, woodland, and water. Suppose these "known" map areas are

estimated to be 20 percent grassland, 60 percent forest, and 20 percent water. It is

then possible to compare the estimated area by category to the classified imagery-

derived areas for each category. The areas for each category derived from the discrete

classification of the remotely-sensed data consist of: 18 percent grassland, 61 percent

forest, and 21 percent water. After classification of the remotely-sensed data, non-sites

error assessment of the derived map is done. Assuming that the area estimates of

each of the three categories are correct, the non-site-specific error analysis would not

indicate a significant problem with the classification of the remotely-sensed data.
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Non-site-specific error analysis consists of identifying general problems with the
resulting classification, but provides no information about the locational accuracy of

the assessment (pixel misclassification), or how well each pixel was classified. Even

though there was close agreement between the estimated areas and the areas derived

from the classified map, the classification may still have been inaccurate in terms of
locational or site-specific errors. If a substantial difference between the total areas in
the estimate and the total areas in the classification occurred, it would be clear that

the classification had not performed well. Thus, limitations of using non-site-specific

error assessment quickly reveal themselves. Figures 1 and 2 show the limitation of

non-site-specific error assessment for discrete classification relative to locational

errors. Figure 1 shows the "known" data themes and is the reference map. Figure 2
is the result of the discrete classification of the remotely-sensed data set. The

proportions of the three categories are similar in each map, but the physical location

of each category in the resultant map (Figure 2) does not match the original map

(Figure 1).

Non-site-specific accuracy assess

ment has limited utility; it is useful

only for detecting gross problems
with discrete classifications because

of its inherent inability to identify
locational errors. In other words,

non-site-specific accuracy assessment

can provide some measure of agree-

ment between a reference map and

classification in terms of the areal
extent of each category, but it does Figure 1. Reference map (G=Grass, F=Forest, W=Water).

not provide any information about

the locational accuracy of the classifi-
cation. Locational accuracy is impor- / K 'K , // /

tant if the objective is to derive some

form of spatial representation of ' "'.. /-'^ /,"' /
0/

landcover characteristics from the ^^^/ ^/
classification of remotely-sensed ^. . /,,-^" "/

data. Results derived from an error
assessment using the non-site-spe-

cific technique may be misleading.

Site-specific error analysis is a more 0. x`
rigorous technique for assessing

accuracy. Figure 2. Classification map (categories same as Figure 1).
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Site-Specific

Site-specific error analysis takes into account locational accuracy of the classification

(Campbell 1987, p 340). This process makes a pixel-by-pixel comparison between the

remotely-sensed, data-derived thematic map and a "true" map of the area with the

same theme. This accuracy assessment approach is still prone to errors attributable

to control point location error, boundary line error, and pixel misclassification (Hord

and Brooner 1976). Usually, the purpose of classification is to derive a thematic map

of some unknown characteristic of the Earth's surface or some characteristic that has

changed over time, so it would be unusual for a complete and current reference map

to exist. However, the reference map can be represented by a sample of locations

within each theme for the area of interest. The selection sample locations and sample

size is determined by the requirements of the subsequent analysis. In most cases, the

analysis will include inter-class analysis as well as overall accuracy analysis.

Data requirements, sampling approach, and sample size. The data requirements for

performing a classification include remotely-sensed data, ground-truthed training data

for characterizing spectral parameters of each class (e.g., "plant community type"), and

an independent set of ground-truthed data (reference data) for accuracy assessment.

Since it is impractical to have a complete pixel-by-pixel "ground truth" map, an

adequate subset or sample number of points (pixels) is needed for there to be a

rigorous accuracy assessment of a classification. One must use an appropriate

sampling technique that meets statistical requirements.

Site-specific accuracy assessment can be evaluated for an overall classification or on

a per-category basis. The more rigorous and useful approach is to evaluate accuracy

on a per-category basis, which provides more insight into classification errors that

may be unique to specific categories. Category specific errors are not as readily

apparent in an overall assessment. A stratified random method is an appropriate

sampling method for accuracy assessment on a per-category basis (Van Genderen and

Lock 1977). The Kappa Coefficient of Agreement, which is a statistical measure of the

significance of difference between observed agreement of two classifications versus

agreement due to random chance, is commonly used in both types of assessment and

requires a multinomial sampling method. A stratified random sample is a multi-

nomial sampling method, and therefore is an appropriate sampling method to be used

with the Kappa statistic. The Kappa statistic is discussed in more detail later in this

document. With the stratified random approach, points are stratified by map category,

and simple random sampling is employed within each stratum (Stehman 1992). Once

the sampling design has been determined, the number of sample points must be

determined. The number of reference pixels required for accuracy assessment depends

on the minimum level of accuracy (e.g., 85 percent) required. Jensen discusses
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equations suitable for determining a minimum number of pixels required for different

levels of accuracy (Jensen 1986). One approach to determining the total number of

reference pixels (observations) needed to assess the accuracy at a minimum level uses

Equation 1:

N - 4(p) (q [Eq 1]E 2

where

N = total number points to be sampled

p = expected percent accuracy

q- = 100-p
E = allowable error.

The equation above computes the ideal number of pixels to sample as reference points

for an overall accuracy assessment of a classification. As allowable error increases, the

number of required sample points decreases. Assuming a stratified random sampling

approach, the total number of reference pixels or sample points required at a given

expected accuracy and allowable error must be further stratified by thematic category.

Van Genderen states that a minimum sample size of 20 is required for an 85 percent

classification accuracy, while 30 observations (reference pixels) per class are required

for 90 percent accuracy (at the 0.05 confidence level) (Van Genderen and Lock 1977).

Locating random points. The simplest way to generate random points is to pick two

random numbers, one the horizontal and the other the vertical coordinate. In the

UTM coordinate system, one random number would be chosen for the easting and

another random number would be chosen for the northing. This is simple to do in a

GIS. Using GRASS, the program r.random can be used to identify random pixels in

a raster map (Westervelt et al. 1987).

Error matrix. An error matrix can be useful when evaluating the effectiveness of a

discrete classification of remotely-sensed data. An error matrix is a means of reporting

site-specific error (Campbell 1987). The error matrix is derived from a comparison of

reference map pixels to the classified map pixels and is organized as a two dimensional

matrix. This matrix takes the form of the columns representing the reference data by

category and rows representing the classification by category. An error matrix is also

referred to as a confusion matrix or contingency table, and in many cases, classifica-

tion categories are arranged in columns and reference data represented along the rows

of the matrix (Janssen and van der Well 1994). However, for consistency and ease of

explanation, this document assumes an error matrix arranged according to the original

definition shown in Table 1.
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Table 1. Error matrix.

Reference Data

Grass Forest Water Row Marginals

Grass 77 8 0 85.00

Forest 6 84 0 90.00

Water 0 0 74 74.00

Column Marginals 83.00 92.00 74.00 249.00

Measures of agreement. From the error matrix, several measures of classification

accuracy can be calculated, including percentage of pixels correctly classified, errors

of omission, and errors of commission. In addition, statistical measures such as the

Kappa Coefficient of Agreement, Kappa variance, and Kappa standard normal deviate

can be calculated from the error matrix. The most commonly used measure of

agreement is percentage of pixels correctly classified. This measure (Equation 2) is

r

[Eq 2]

i=1

simply the number of pixels correctly classified from the validation set of pixels divided

by the total number of reference pixels. Percentage correct is calculated by dividing
the sum of the diagonal entries of the error matrix by the total number of reference

pixels. Therefore, percent correct provides an overall accuracy assessment of a

classification. However, if a minimum classification accuracy is required, it is
necessary to verify that the calculated percent correct for the overall classification does

indeed exceed the pre-determined minimum classification accuracy with some level of

confidence. To assure that a minimum overall accuracy, a one-tailed lower confidence

limit at a specific level of confidence must exceed the minimum accuracy standard

(Jensen 1986). For example, the lower confidence limit for a one-tailed binomial

distribution at a 95 percent confidence level can be calculated by Equation 3:

P = p [1.645 (p)(q-) /n + 50n [Eq 3]

where:

p = the accuracy of the map expressed as a percent

n = the sample size

p- = percent of observation correctly classified

q- = 100-p-.



USACERL TR EN-95/04 13

If p exceeds the minimum accuracy required of the classification, then the accuracy of

the classification meets or exceeds the minimum accuracy requirement at the 95

percent confidence level. Percent correct provides an overall indication of how well a

classification performed. However, an error matrix provides not only information that

can be used to assess overall classification accuracy, but also information about the

performance of a classification on a category-by-category basis.

To assess the classification accuracy of individual categories, the percent correct by

category can be calculated. Percent correct (p-) for an individual category is calculated

by dividing the total number of correctly classified pixels for that category, i.e., the

diagonal entry, by the total number of pixels in the reference map for that category,

i.e., the column total (Table 1). As with the overall accuracy assessment, it is also
necessary to determine if the accuracy of classification for individual categories

exceeds some minimum accuracy requirement at some level of confidence. However,

to determine the confidence limits of percentage correct for individual categories, a

two-tailed test is appropriate. The upper and lower confidence limits are calculated
in much the same way as the lower confidence limit for the overall percent correct is

calculated, except that a two-tailed test is necessary. For example, the upper and

lower confidence limits for a two-tailed binomial distribution at a 95 percent

confidence level can be calculated using Equation 4 (Jensen 1986).

p = p ± 1.96 )p)(q -) /n ,+5 [Eq 4]

where:

p = the 95 percent confidence limits

p = the percent correct for the category

q- = 100- p~

n = the number of observations in a particular category.

As with overall percentage correct calculations, if the confidence interval for

percentage correct for an individual category is greater than the minimum required
accuracy for a specific category, then the accuracy of classification of that individual

category meets or exceeds the minimum accuracy for that category at a certain level

of confidence. In addition to providing information necessary to calculate percentage

correct for an overall classification or for individual categories with respective

confidence intervals, an error matrix also contains other information useful in

assessing the accuracy of a classification. The diagonal that extends from the upper

left corner to the lower right corner of the matrix is referred to as "the diagonal," where

each diagonal entry represents the number of correctly classified pixels for that

specific category. Diagonal entries were used in the above examples to calculate

percentage correct with respective confidence intervals. Assuming the arrangement
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of the error matrix as discussed earlier with reference categories spread across the top

(x-axis) of the matrix and classification categories distributed along the left hand side

(y-axis) (Table 1), the column of sums on the right hand side represents the number

of pixels in each category of the classified image under evaluation, and the bottom row

of sums represents the total number of pixels in each category of the reference map.

These sums are referred to as row and column marginals. In addition, nondiagonal

values in each column represent errors of omission and nondiagonal values in each row

represent errors of commission (Campbell 1987).

Errors of omission refer to pixels in the reference map that were classified as

something other than their "known" or "accepted" category value. In other words,

pixels of a known category were excluded from that category due to classification error.

Errors of commission, on the other hand, refer to pixels in the classification map that

were incorrectly classified and do not belong in the category in which they were

assigned according to the classification. In other words, pixels in the classified image

are included in categories in which they do not belong. Referring back to the error
matrix, errors of omission for each category are computed by dividing the sum of

incorrectly classified pixels in the nondiagonal entries of that category column by the

total number of pixels in that category according to the reference map (i.e., the column
marginal or column total). In a like manner, errors of commission for each category

are calculated by dividing the sum of incorrectly classified pixels in the nondiagonal

entries of that category row by the total number of pixels in that category according

to the reference map (i.e., the column marginal or total) (Jensen 1986).

When evaluating the accuracy of an overall classification, it is best to examine several

measures of accuracy, including overall percentage correct, percentage correct by

category and also both errors of commission and omission by category. Examination

of a single measure of accuracy may lead to incorrect assumptions about the accuracy

of a classification. Different accuracy measures may be of interest depending on

whether the person performing the classification is interested in the success of the

classification or the end user of the classified map is interested in the accuracy or

reliability of the map. A person interested in evaluating their classification efforts

may be more interested in producer accuracy, which is simply the percentage of pixels

of a know category type in a reference map that were actually classified as such. An

end user of the map, however, may be more concerned with the reliability of the map,

or user accuracy, which is simply the percentage of pixels in each category of the

classification map that are actually that category of the ground (Congalton 1991).

Obviously, both user and producer accuracy should be of interest and are important

measures of accuracy.
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User accuracy, or reliability, is actually the equivalent of percentage correct for an
individual category and is calculated as described earlier. Producer accuracy is
calculated in a similar fashion, with the only difference being that the total number
of correctly classified pixels for a category is divided by the total number of pixels in
that category in the classification map (i.e., the row marginal or row total) instead of
dividing by the total number of pixels in that category in the reference map (i.e., the
column marginal or column total). User and producer accuracy are directly related to
errors of commission and errors of omission, respectively (Janssen and van der Wel

1994). The relationships are:

User's Accuracy (reliability) = percentage correct by category = 100% - error of
commission (%)

and
Producer's Accuracy = 100% - error of omission (%)

Although percentage correct is the most commonly used measure of accuracy
assessment, this measure has limitations. It is only suitable when making compari-
sons between another classification with the same resulting end number of categories.
Commonly used measures of accuracy assessment such as percent correct, user
accuracy, and producer accuracy are also limited by the fact that they do not account
for simple random chance of assigning pixels to correct categories. Surprisingly
enough, simple random assignment of pixels to categories could potentially lead to
good results (Campbell 1987). Obviously, pixels are not assigned randomly during
image classification, but there are statistical measures that attempt to account for the
contribution of random chance when evaluating the accuracy of a classification. The
Kappa Coefficient of Agreement is a statistic suitable for assessing accuracy of
nominal data classification.

The Kappa Coefficient is a discrete multivariate measure that differs from the usual
measures of overall accuracy assessment in basically two ways. First, the calculation
takes into account all of the elements of the error matrix, not just the diagonals of the
matrix (Foody 1992). This has the effect of taking into account chance agreement in
the classification. The resulting Kappa measure compensates for chance agreement
in the classification and provides a measure of how much better the classification
performed in comparison to the probability of random assigning of pixels to their
correct categories. Estimated variance of the Kappa Coefficient of Agreement can also
be calculated. This is most useful in comparing two different approaches to the same
classification scheme by allowing a standard normal deviate, or Z score, to Ise
calculated. The Z score is used to determine if the differences in accuracy levels for

two classifications with the same resultant classification scheme are significant. "The
Kappa test statistic tests the null hypothesis that two independent classifiers do not
agree on the rating or classification of the same physical object, in this case the class
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of a ground truth site" (Fitzgerald and Lees 1994). The Kappa Coefficient of
Agreement, k, is calculated as:

r r

N xi- i (x i * xi.)
[Eq 5]

N 2 _ (xi. * x~i)

where:

r = the number of rows in the error matrix

xii = the number of observations in row I and column i

xi+ = the marginal totals of row i

x+i = the marginal totals of column i
N = the total number of observations (Bishop, Feinberg, and Holland 1975).

An advantage of using the Kappa Coefficient is the ability to compare two classifica-

tions and determine if the accuracy level between the two classifications is signifi-
cantly different. The first step in determining significance is to calculate the variance
of the Kappa Coefficient of Agreement. The estimated variance of Kappa can be

calculated as:

V I pii [(1 - Pc) (p,. + P+i) (1- p.)] 2 1+ (1- p0 ) 2

N (1 -pc) 4

[Eq 6]

SPij (Pi+ + p+j) 2 _ (PoPc - 2pc + p.)2

where:

VT = the estimated variance of Kappa
N = the total number of observations

m = the number of categories

PC = the proportion of observations that agree by chance
Po = the proportion of observations correctly classified (Gong and Howarth

1992).

Using the Kappa Coefficient of Agreement, k, and its estimated variance of Kappa, V
for each classification, the standard normal deviate, Z, can then be calculated as

(Congalton, Oderwald, and Mead 1983):

z (k1 -k 2) [Eq 7]
[V(k 1) + V(Wk2)][
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where:

Z = the standard normal deviate

=1 the Kappa Coefficient of Agreement for the first classification

k 2 = the Kappa Coefficient of Agreement for the second classification

V(k 1 ) = the estimated variance of

V(k 2) = the variance of k 2"

If Z exceeds 1.96, then the difference is significant at the 95 percent confidence. level

(Rosenfield and Fitzpatrick-Lins 1986). If Z exceeds 2.58, then the difference is

significant at the 99 percent confidence level (Gong and Howarth 1992). If it is found

that no significant difference exists, either classification can be used since they are

essentially the same in terms of accuracy. Many geographic information/image-

processing systems have the capability to calculate k and V.

It is also possible to calculate a measure of agreement, Conditional Kappa Coefficient

of Agreement, for each individual class. The conditional Kappa is somewhat analogous

to the overall Kappa Coefficient of Agreement measure except that a Conditional

Kappa Coefficient of Agreement can be derived for each category of the classification.

The Conditional Kappa Coefficient of Agreement measure is used to evaluate

classification accuracies on a class-by-class basis. The Conditional Kappa Coefficient

of Agreement (Bishop, Feinberg, and Holland 1975) is calculated by:

Ki- = i+ [Eq 8]
Pi+ - Pi+ P+i

where:

Ni = Conditional Kappa Coefficient of Agreement for the ith category

Pii = the number of correct observation for the ith category
Pi+ = the ith row marginal

P+i= the ith column marginal.

Conclusion

A rigorous assessment of the accuracy of a discrete classification of remotely-sensed

data requires more than a simple calculation of percent of overall correct. The use of

discrete multivariate statistical techniques enhances the accuracy assessment process.

The use of an error matrix can help identify problems with a classification and can

help improve classification by isolating misclassifications of pixels. This can help

identify appropriate classification models and potential shortfalls in the type and

T
The GIS/IP software GRASS has the ability to calculate these two values.



18 USACERL TR EN-95/04

quality of ground-truth data. Site-specific accuracy assessment is essential when the

resultant classification is used as an input for some model or as a basis for a

management decision.
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3 Accuracy Assessment Case Studies

This chapter presents two different classifications of a synthetic data set and their

corresponding error matrices as examples of both accuracy assessment of a single

classification and comparison of classification accuracies between two different

classifications.

Single Classification Accuracy Assessment

Error matrix one summarizes the classification of a satellite image into four categories:

Woodland, Grassland, Non-Vegetated, and Water. Reference pixels for each of the four

categories were selected in a stratified random fashion. The number of reference
pixels for each category are the column marginal in error matrix one. As previously

mentioned, a minimum of 30 reference pixels per category is required to provide

meaningful results at the 90 percent accuracy level with an allowable error of 5
percent. In addition, according to formula 1, the ideal total number of reference pixels

for the same expected accuracy level and allowable error is 144. This example meets

both criteria with a minimum of 48 reference pixels in the Grassland and Water

categories, and a total of 200 reference pixels.

Classification-Matrix 1

The most common measure of overall accuracy is percent correct. In this example, 180

out of 200 pixels were correctly classified, resulting in 90 percent correct. Referring

to the error matrix, percent correct was calculated by summing the diagonal values

and dividing by the total number of pixels. Given a 90 percent overall observed

correct, one could reach the initial conclusion that the classification performed well.

However, if a level of classification accuracy for the product map is required prior to

the classification, it is necessary to test the level of statistical confidence to the
accuracy to ensure that the classification actually exceeds the minimum accuracy

required with some level of confidence. In this example, assuming a predetermined

minimum standard of 90 percent, it can be said with 95 percent confidence that the

classification meets the 90 percent accuracy criteria according to Equation 3.
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A more thorough review of the error matrix reveals additional information about the

performance of the classification, including information about classification accuracy

of individual categories (Tables 2 and 3). The classification performed best for the
water category, with 48 out of 50 pixels classified correctly. The two remaining pixels

that were classified as water were in fact nonvegetated surfaces, resulting in a 4

percent error of commission. Error of omission for water was zero percent, indicating
that all 48 reference pixels in the water category were correctly classified. The

classification was least successful in correctly classifying grassland areas, with only

40 of the 50 grassland pixels classified correctly. Examination of errors of commission
and omission for grassland and nonvegetated surfaces indicates that the distinction

between these two categories was the largest source of error or confusion in the

classification. Six pixels classified as grassland were in fact nonvegetated surfaces and
four pixels were classified as woodland. Five pixels of grassland in the reference data

set were actually classified as nonvegetated and three pixels as woodland. Overall,

error of commission and omission for grassland were the highest of the four categories,
at 20 percent and 16.5 percent respectively.

Table 2. Error matrix 1.

Reference Data

_ _ _ Woodland Grassland Nonvegetated Water Row Marginals
.2
4 Woodland 47 3 0 0 50.00"_.2
U) Grassland 4 40 6 0 50.00

SNonvegetated 0 5 45 0 50.00

SWater 0 0 2 48 50.00

Column Marginals 51.00 48.00 53.00 48.00 200.00

Table 3. Summary of error matrix 1.

Category % Commission % Omission Estimated Kappa

Woodland 6.000000 7.843137 0.919463

Grassland 20.000000 16.666667 0.736842

No Veg. 10.000000 15.094340 0.863946

Water 4.000000 0.000000 0.947368

Kappa Kappa Variance

0.866667 0.018000

Observed Correct Total Observed % Observed Correct

180 200 90.000000
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In addition to errors of commission and omission, estimated kappa values for the

individual categories also provides some indication of individual category classification

accuracies. Again, classification of water was most accurate, with an estimated kappa

of 0.947, while grassland was the least accurate, with an estimated kappa of 0.736.

Kappa values for both the entire classification and each individual category account

for the contribution of random chance in the classification. For example, assignment

of pixels to the water category was 94 percent more accurate than what could be

expected from a random assignment of pixels to one of the four categories.

Classification-Matrix 2

The second error matrix (Tables 4 and 5) represents a classification of the same area

using a different classification technique. Similar to the previous classification (Tables

2 and 3), the classification of water was most accurate, with the highest estimated

kappa and lowest errors of commission and omission. Classification of grassland was

again the least accurate, with the lowest estimated kappa value and the highest errors

of commission and omission. However, further examination of the error matrix reveals

that this classification scheme resulted in more confusion between woodland and

grassland than the previous classification. The woodland category had the second

highest errors of commission and omission and the second lowest estimated kappa.

In this case, four pixels classified as woodland were in fact grassland, and one

additional pixel was nonvegetated. Also, eight woodland pixels in the reference data

set were incorrectly classified as grassland.

In this example, 174 out of 200 pixels were correctly classified, resulting in 87 percent

correct. Referring to the error matrix, percent correct was calculated by summing the

diagonal values and dividing by the total number of pixels. Given an 87 percent

overall observed correct, one could reach the initial conclusion that this classification

also performed well. However, if a level of classification accuracy for the product map

is required prior to the classification, it is necessary to test the level of statistical

confidence to ensure that the classification actually exceeds the minimum level of

Table 4. Error matrix 2.

Reference Data

_Woodland Grassland Nonvegetated Water Row Marginals

Woodland 45 4 1 0 50.00

e Grassland 8 36 5 1 50.00

SNonvegetated 0 4 46 0 50.00

a Water 0 1 2 47 50.00

Column Marginals 53.00 45.00 54.00 48.00 174.00
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Table 5. Summary of error matrix 2.

Category % Commission % Omission Estimated Kappa

Woodland 10.000000 15.094340 0.863946

Grassland 28.000000 20.000000 0.638710

Nonvegetated 8.000000 14.814815 0.890411

Water 6.000000 2.083333 0.921053

Kappa Kappa Variance

0.826667 0.017400

Observed Correct Total Observed % Observed Correct

174 200 87.000000

confidence. In this example, assuming a predetermined minimum standard of 87

percent, it can be said with 95 percent confidence that this classification meets the 87

percent accuracy criteria according to Equation 3.

As in the first example, the error matrix reveals additional information about the

performance of the classification (Tables 4 and 5). The classification performed best

for the water category, with 47 out of 50 pixels classified correctly. Of the three

remaining pixels that were classified as water, two were classified as nonvegetated

surfaces and one as grassland, resulting in a 6 percent error of commission. Error of

omission for water was 2 percent, indicating that 47 of 48 reference pixels in the water

category were correctly classified. The classification was least successful in correctly

classifying grassland areas, with only 36 of the 50 grassland pixels classified correctly.

Examination of errors of commission and omission for grassland and nonvegetated

surfaces indicates that the distinction between these two categories was the again the

largest source of error or confusion in the classification. Five pixels classified as

grassland were in fact nonvegetated surface, one pixel classified as grassland was

water, and eight pixels were classified as woodland. Four pixels of grassland in the

reference data set were actually classified as nonvegetated, four pixels as woodland,

and one pixel as water. Overall, errors of commission and omission for grassland were

the highest of the four categories, at 28 and 20 percent respectively.

In addition to errors of commission and omission, estimated kappa values for the

individual categories also provide some indication of individual category classification

accuracies. Again, classification of water was most accurate, with an estimated kappa

of 0.921, while grassland was the least accurate, with an estimated kappa of 0.639.

Kappa values for both the entire classification and each individual category account

for the contribution of random chance in the classification. Assignment of pixels to the
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water category was 92 percent more accurate than what could be expected from a

random assignment of pixels to one of the four categories.

Multiple Classification Accuracy Assessment

An overall comparison of two different classification schemes is sometimes desired,

especially if the producer of the classification is testing different classification methods

and is interested in the relative increase or decrease in accuracy for each new

classification which is tested. In the first example, the classification (Tables 2 and 3)
resulted in a higher percent correct (90 vs. 87 percent) and a higher kappa value (0.867

vs. 0.827) than classification two (Tables 3 and 4). From these observations alone, one

might conclude that classification method one produced more accurate results. One

might also conclude that classification one had the most difficulty in distinguishing

between grassland and nonvegetated surfaces, while classification two not only had

problems distinguishing between grassland and nonvegetated surfaces, but also had

problems distinguishing between woodland and grassland. However, one additional

test can be conducted that tests if one classification is significantly different from

another by calculating the standard normal deviant, Z, using kappa and estimated

kappa variance according to formula 7. If the standard normal deviate exceeds 1.96,
then the difference between the accuracy of the classifications is significant at the 95

percent confidence level. Likewise, if Z exceeds 2.58, then the difference is significant

at the 99 percent confidence level. In the example used here, the standard normal

deviant is 0.13; therefore, one cannot say that the accuracy of classifications one and
two is significantly different at the 95 percent confidence level.



24 USACERL TR EN-95/04

4 Conclusions

Once the classified image is integrated into a GIS, thereby becoming an information

source for natural resource managers, accuracy assessment should become an integral

part of any classification process. Accuracy assessment may include both non-site-

specific and site-specific analyses. Non-site-specific analysis includes relatively simple

comparisons of areal coverage of categories, while site-specific analyses range from

simple percent-correct calculations to more complex multivariate statistical tech-

niques.

This study compared methods of site-specific and non-site-specific analysis, and

concludes that non-site-specific analysis has limited utility and is only useful for

detecting gross errors in a classification. Site-specific analysis, however, provides

critical information about the locational accuracy of a classification, and is therefore

more rigorous and useful for use with such programs as LCTA. Assuming an adequate

sampling method, measures of agreement such as overall percent correct and percent

correct for individual categories can be assigned statistically-defined confidence
intervals to ensure that classifications meet minimum accuracy requirements.

Use of an error matrix is one method that can provide additional insight into

classification errors that may be unique to specific categories, and may generate
information necessary to calculate errors of commission and omission.

Use of the Kappa Coefficient of Agreement accounts for random chance in accuracy

assessment. Kappa and estimated Kappa variance for two different classifications can

also be used to calculate a standard normal deviate, which in turn can be used to

determine if the kappa values of the two classifications are significantly different.

Conditional Kappa Coefficients of Agreement can also be calculated to assess

accuracies on a category-by-category basis.

Time and funding constraints may often dictate the amount of data that can be

gathered in conjunction with the collection of satellite imagery; a comprehensive

accuracy assessment may not always be practical. However, depending on the
intended use of the classified data, some level of accuracy assessment should always

be performed. It is concluded that, at a minimum, a Kappa Coefficient of Agreement

should be attached to any resultant classification of satellite imagery. Ideally, several
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measure-of-accuracy assessments should be performed and included as documentation
with the classification. This is critical to end-users of the data, and also provides

valuable metadata that will be necessary as more stringent standards are imposed on

the exchange of digital spatial data between end-users.
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